Innovation in Emerging Areas in Packaging

Dr. Narayan Ramesh
Packaging and Specialty Plastics R&D
The Dow Chemical Company
Freeport, Texas

ANTEC 2017
By 2030, the world’s population will reach 8.3 billion

The world will need...
50% more food
45% more energy
30% more water
Performance Plastics

Plastics play a major role in all segments today

Packaging
- Food and Specialty
- Industrial & Consumer

Hygiene & Medical
- Diaper
- Fem Care
- Adult Incontinence

Transportation
- Bumper and Fascia
- Interior Trim
- Hose and Tube
- Weather-strip

Infrastructure
- Roofing & Flooring
- Artificial Turf
- Telecommunications
- Power
- Pipe

Consumerism
- Hot Melt Adhesives
- Housewares
- Footwear

Benefits: Durability, Toughness, Haptics, Reliability, Appearance, Sustainability, Safety & Protection

Customer base requires a cost-performance balance & other benefits (Haptics, Sustainability etc)
The Growth of Polyolefins

1975 Prediction for 1995
- High Performance Engineering Thermoplastics e.g. PEEK, sulfones, PPS etc.
- Nylons, ABS, PS, SAN, etc.
- Polyolefins, PE, PP, LLDPE, EPDM etc.

1995 Reality
- 80%
- 19%
- 1%
The Growth of Polyolefins

1975 Prediction for 1995

- Customers will pick the cheapest solution that meets their performance criteria.
- You can give away extra performance, but customers won’t pay for it.

1995 Reality
Inter-material Substitution: Balancing Act

- High Cost
 - High Performance
- Low Cost
 - High Performance
- Low Cost
 - Moderate Performance
- High Cost
 - High Performance

Cost

Environmental impact

Performance
The Evolution of Polyethylene:

An Evolution of Catalysis!

LDPE
Radical mechanism (1933)
- High Temperature & Pressure
- Many reactions possible
- Kinetics complicated

Highly Branched:
- Excellent flow properties
- Fast extrusion rates
- Poor mechanical properties

LLDPE
Coordination catalysis (1950’s)
- Low Temperature & Pressure
- Multiple catalytic sites
- Nobel Prize Zielger & Natta 1963

Linear Backbone:
- PE homopolymer: crystalline
- Copolymers: flexible and tough
- Inhomogeneous

mPE
“Single Site” catalysts (1990’s)
- Molecular catalysts
- Kinetics the same for each site

Homogeneous Polymers:
- Narrow molecular weight distribution
- Narrow comonomer distribution
- New monomer combinations
- Long chain branching
Polymer Properties Determined by Catalysis

Composition of each chain determined by relative kinetic rates:

Molecular structure of polymer chains determines bulk structure:

- **Lamella**: long sequences of ethylene units fold into crystallites
- **Interfacial regions**: “defects” are excluded into amorphous regions
- **Tie molecule**: Bridge more than one lamellar crystallite

With “Perfect” Kinetics Properties are Correlated

More comonomer = lower density = less crystallinity = softer material = lower melting
Market-driven Innovation Model

An average of 40 new products are launched globally each quarter – driven by innovations in packaging.
Material Science: From Catalyst to the Supermarket Shelf

Y - Market Trend
- Up to 25% Down-gauging

y - Product Functionality
- Higher abuse at a given modulus
- Lower diffusivity/solubility of water vapor & oxygen
- Broad sealing window
- High hot tack strength

x - Molecular Structure
- Control of LCB & SCBD
- Crystal structure & orientation control
- Control of MWD
- Control of SCBD

- Improved barrier for increased shelf life
- High production rate for food packaging
- Lower defect rate
Resins to Structures → Deliver Functionality & Sustainability

ML Structures
3-11 Layers

Functionality
- Print/Appeal
- Bulk
- Tie
- Barrier
- Structural
- Processing
- Abuse
- Sealant

Sustainability
- Down-gage
- Recyclable
- Renewable Energy

©™Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow

SPE ANTEC® Anaheim 2017 / 1303
Superior Packaging Abuse Resistance

Collaborate
- Reduced Weight & Thickness

Innovate
- Superior Stiffness & Toughness

Accelerate
- Higher Performance

Up to 25% Down-gauging

DOWLEX™, ELITE™, INNATE™

Trademarks of The Dow Chemical Company ("Dow") or an affiliated company of Dow

SPE ANTEC® Anaheim 2017 / 1304
Breakthrough Compatibilization for Barrier Packaging

Collaborate
Improved Compatibilization of Polyethylene & EVOH / PA

Innovate
Advanced Compatibilization Solutions

Accelerate
Recyclable Barrier Package

- Cap Layer: PE
- Tie Layer: AMPLIFY™ TY
- Barrier Layer: EVOH, Polyamide
- Tie Layer: AMPLIFY™ TY
- Sealant Layer: PE

Non Recyclable Pouch
Recyclable Pouch By Dow

©™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow
Packaging Solutions by Design

Collaborate
- Reduced Weight

Innovate
- Package Design

Accelerate
- Efficient Packaging

©™ Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow
Comparison of Deformed Shape

The pouch deformation is decreasing with increase in the pouch length.
Procedure for shelf stability modeling

FE model for 100% filled pouch based on laminate properties

Actual pouch 100% filled with water

FE Deformed shape of pouch with Laminate material properties
Enhanced PE Functionality For Structure Simplification

Resins

Packaging Functionality

Solution

Sustainability = Combining Technologies + Full Value Chain Connectivity

AGILITY Performance Low Density Polyethylene (LDPE) by Dow Chemical Co. received the Market Disruptor-Products Bronze Award

Equipment (Bosh VFSS) - Material Change (Dow) - Consumer education (SPC How to Recycle label) – Retailer (Drop off location) - Brandowner (Scalability).
Delivering Sustainable Value

2025 Sustainability Goals

- Process Innovation
- Energy Efficiency
- Recyclable Solutions
- Energy Bag Pilot Program

21

Resin Manufacturer

Converter

Brand Owner

Retailer & Consumer

Catalyst Breakthroughs

Dowgauging / Improved Impact

Recycle Compatibilizers

PacXpert™

- SPE ANTEC® Anaheim 2017 / 1310

©™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow
Thank You